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Abstract

The unsteady, nonlinear response of a liquid droplet to an imposed acoustic perturbation has been
simulated using an algorithm based on boundary element methods (BEMs). The code was used to study
the in¯uence of the acoustic frequency, intensity, and gas/liquid density ratio upon the droplet behavior.
Heightened droplet responses were observed for frequencies near the harmonics of the second and
fourth mode frequencies. Several types of droplet atomization have been observed as the acoustic
intensity is increased. Increasing gas density (at ®xed excitation conditions) also heightens droplet
response. # 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The behavior of liquid droplets in the presence of an acoustic ®eld is a phenomena of

fundamental importance. There are a variety of applications in which droplets are excited by

acoustic energy, such as meteorological physics, containerless processing, and atomization.

Droplet oscillations in the absence of external excitation will ultimately dissipate, and the drop

will return to its equilibrium state. However, a strong acoustic ®eld may be present, such is the

case in airborne combustors and acoustic levitators. In such a situation, the droplet will

experience forced oscillations. This oscillatory behavior of drops may greatly a�ect the process

of secondary atomization.

A large number of researchers have studied ``free oscillations'' of droplets under conditions

where forces from the gaseous phase are neglected. The initial linear analyses of this problem

are due to Rayleigh (1879) and Lamb (1982) for the inviscid and weak-viscous cases. These

results provide the droplet's frequency of oscillation under various modes under the

presumption that the shape perturbation is in®nitessimal. Lamb's result indicates that weak
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viscous e�ects have a negligible e�ect on the frequency predicted by Rayleigh. Prosperetti

(1980) furthered the linear analysis for arbitrary viscous e�ects.

More recently, theoretical/numerical e�orts have focused on nonlinear e�ects. Tsamopoulos

and Brown (1983) developed a theoretical series solution for moderate amplitude, inviscid

droplet oscillations. They determined that the droplet resonant frequency decreases with the

square of the oscillation amplitude. Lundgren and Mansour (1988) used a boundary integral

method to investigate large amplitude oscillations of droplets in zero-gravity including weak

viscous e�ects. They discovered that relatively small viscosities can signi®cantly a�ect the

coupling of oscillatory modes. However, their method was limited to only weak viscous

problems. More recently, Basaran (1992) used the Galerkin/®nite element technique to address

nonlinear oscillations of viscous droplets. From these simulations he observed that a ®nite

viscosity has a much larger e�ect on mode coupling than what is predicted by the calculations

including weak viscous e�ects.

Experimental work in droplet oscillations has been conducted by Trinh and Wang (1982), in

which large amplitude, nonlinear oscillations of drops were studied. In their studies, a

neutrally-buoyant droplet was suspended in an immiscible liquid and excited by acoustic±

radiation pressure forces generated by an acoustic levitator. More recently, Wang et al. (1996)

studied the oscillations of low-viscosity drops in a microgravity environment on board the

space shuttle using a similar acoustic chamber to induce droplet deformation. In these

experiments, droplets were deformed and then allowed to oscillate freely. From a controlled

break up of a liquid jet, Becker et al. (1991) generated virtually monodispersed droplets that

oscillated in a damped, axisymmetric fashion. These experiments veri®ed the reduction in

natural frequency at ®nite amplitudes as predicted by Tsamopoulos and Brown.

Despite these advancements in the area of free-oscillation of droplets, there have been

relatively few works aimed at increasing the understanding of droplet response to forced

oscillations. Here, the experimental work of Daidzic (1995) is a notable exception. Using an

acoustic levitator, Daidzic examined nonlinear forced oscillation of droplets. In his experiments

the droplets exhibited ``chaotic behavior'', presumably because the forcing function was three-

dimensional and time-dependent. He concluded that prediction of droplet behavior over a long

period of time is di�cult at best, and warrants further investigation.

The works of the aforementioned researchers have considerably improved the understanding

of droplet behavior. However, the forced oscillation problem still warrants additional

consideration. The focus of this work is to examine forced, nonlinear, inviscid droplet

oscillations by computational analysis. The boundary element method (BEM) will be used to

conduct these studies. This technique o�ers a savings in computational power as compared to

other methods, such as computational ¯uid dynamics, while maintaining a high degree of

accuracy. As the name implies, BEMs require the discretization of only the boundary of the

domain, providing a drastic reduction in the total number of nodes (as compared to mesh

based schemes) needed for an accurate solution. Hilbing, et al. (1995) and Mansour and

Lundgren (1990) have also demonstrated a capability of running BEM simulations beyond

atomization events. The following sections of this paper describe the development, validation,

and results generated using this computational tool.
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2. Model development

Under many situations, the wavelength of the acoustic perturbation is much greater than the
droplet radius, which implies that spatial variations within the acoustic wave are negligible and
that the disturbance can be modeled as an unsteady, incompressible ¯ow. For example, a large
liquid rocket engine will have acoustic wavelengths of the order of the chamber dimension

(measured in cm), while droplet radii are typically measured in microns. Note that in many
acoustic levitators this assumption may not be valid since the droplet diameter is a substantial
fraction of the acoustic wavelength. In this case, spatial variations within the acoustic wave are
important.

Further, we assume an axisymmetric domain and neglect viscosity in both gas and liquid
phases. Under these conditions, the dynamics of both liquid and gas phases are described by
Laplace's equation:

r2f � r2fg � 0 �1�

where f and fg are velocity potentials for liquid and gaseous phases, respectively.

If we choose the droplet radius (a), peak speed in the acoustic disturbance (U), and liquid
density (r) as dimensions, the interaction between the droplet and the acoustic disturbance is

characterized by the gas/liquid density ratio,

E � rg
r

�2�

the Weber number based on gas density,

We � rgU
2a

s
�3�

and the frequency ratio,

o
on
: �4�

Changes in the magnitude of the acoustic disturbance are introduced through the Weber
number, which is the ratio of the aerodynamic forces to surface tension (s) forces. The
frequency ratio is the ratio of the acoustic frequency of the gas, o, to the linear natural
frequency of the second mode for a liquid drop, on. In the following development, we presume
that the nondimensionalization described above has been applied.

The droplet's fundamental frequencies are obtained from the classic analysis by Lamb. The
nondimensional form for the frequency of mode ``m'' is:
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o2
m �

m�m� 1��mÿ 1��m� 2�
�m� 1�mE�We

: �5�

For this case, the lowest-order (m=2), or natural frequency of a droplet reduces to:

o2
2 � o2

n �
24

�3� 2E�We
: �6�

We expect strong droplet response when the acoustic excitation frequency o lies near

harmonics of on.

At any instant in time, Eq. (1) provides a connection between values of the velocity

potentials and velocities measured normal to the local surface (q and qg) for liquid and gaseous

phases, respectively. This equation is solved using the BEM by beginning with its integral

representation. For the liquid phase, the resulting integral representation of Eq. (1) becomes:

af�~ri� �
�
T

f
@G

@n̂
ÿ qG

� �
dG � 0 �7�

where f(~ri) is the velocity potential at a point ~ri, G is the boundary of the domain, and G

denotes the free space Green's function corresponding to Laplace's equation. In addition, nÃ is

taken to be the outward normal to the domain boundary, and a results from singularities

introduced as the integration passes over the boundary point, ~ri. By using Eq. (7), it is possible

to solve for f or q provided that one of them is known at each point on the boundary. If we

let r and z represent radial and axial coordinates and use the subscript i to denote the ``base

point'' where the integration takes place, the free space Green's function for the axisymmetric

Laplacian can be expressed (Liggett and Liu 1983):

G � 4rK�p���������������������������������������
�r� ri�2 � �zÿ zi�2

q �8�

where

p � �rÿ ri�2 � �zÿ zi�2
�r� ri�2 � �zÿ zi�2

�9�

and, K( p) is the complete elliptic integral of the ®rst kind. For computational e�ciency, this

parameter is curve®t (to an accuracy of 10ÿ8) using results from Abramowitz and Stegun

(1970).

The integration in Eq. (7) is performed by discretizing the boundary into a ®nite number of

segments. Along each segment, both f and q are assumed to vary linearly. Integrations are

carried out by letting each node on the boundary represent a base point, yielding a set of linear

equations relating f and q involving all boundary nodes. The fully-populated matrices used to

store coe�cients of these equations are inverted using the Crout method LU decomposition

from numerical recipes in Fortran (Press, et al. 1992). Additional details regarding the BEM

solution procedure are provided in Hilbing et al. (1995).
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2.1. Free surface treatment

A procedure similar to that of Longuet-Higgins and Cokelet (1976) is used to update the
position of nodes on the interface. Free surface nodes are ``tracked'' along lines parallel to the
local velocity vector in the liquid. Under this assumption, ¯ow kinematics require:

Dr

Dt
� @f
@r

Dz

Dt
� @f
@z
: �10�

The velocities calculated by solving Laplace's equation are normal and tangential to the
surface. While the normal velocity is generated via the solution of Laplace's equation, the
tangential velocity (@f/@s) is calculated using a 4th-order (®ve point) centered di�erence
method. Radial and axial velocities required in Eq. (10) are determined via the coordinate
transformation:

@f
@r
� @f
@s

sin b� q cos b �11�

and

@f
@z
� @f
@s

cos bÿ q sin b �12�

where b is the local wave slope.
The unsteady Bernoulli equation provides the dynamic boundary condition for nodes on the

interface. In an Eulerian system where time derivatives are assumed to occur at a ®xed spatial
location, the dimensionless form of this relation valid in the liquid domain is

@f
@t
� 1

2
�rf�2 � Pg � k

We
� 0 �13�

and the gas domain analog is

E
@fg

@t
� E
2
�rfg�2 � Pg � 0: �14�

Here, the surface curvature, k, is computed using the parametric form due to Smirnov (1964)
involving coordinate derivatives with respect to distance along the interface. All derivatives are
computed using fourth-order centered di�erences in the numerical approximations to k. Since
the nodes on the interface are assumed to travel with the local liquid surface velocity, a
transformation from the Eulerian to Lagrangian reference frame is required:

D� �
Dt
� @� �
@t
� rf � r� �: �15�

By applying this transformation, the Bernoulli's Eqs. (13) and (14) become:

Df
Dt
� 1

2
�rf�2 ÿ Pg ÿ k

We
; �16�
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Pg � ÿ E
2
�rfg�2 ÿ E

Dfg

Dt
� Erf � rfg �17�

where D()/Dt denotes changes in time for nodes moving with the liquid interface velocity.
In the case of the liquid domain, the substantial derivative, Df/Dt, is calculated using

Eq. (16). A ®rst order backward di�erence method was used to calculate the gas based
substantial derivative appearing in Eq. (17):

Dfg

Dt
� fn�1

g ÿ fn
g

Dt
�18�

where n indicates the time level.
A stable, time-accurate procedure has been developed to advance the solutions of Eqs. (16),

(17) for all free-surface nodes. The following steps are taken:

1. an initial value of f and fg are given at each node on the interface;
2. solution of Laplace's equation (described in previous section) provides the liquid domain

velocities, q, at each node on the interface;
3. set qg= ÿ q since the gas nodes are ®xed to move with the liquid nodes and the outward

normals are in opposite directions;
4. solve Laplace's equations for the gas domain to calculate fg at each node in the gas;
5. calculate Dfg/Dt using Eq. (8);
6. calculate the gas pressure distribution along the interface using Eq. (17);
7. this value of gas pressure is used to solve for f at the new time step via integration of

Eq. (16);
8. the interface is ``regridded'' using cubic splines of r, z, Pg, and f to preserve the even

spacing between nodes (Hilbing et al. 1995);
9. steps 2±4 are repeated with the ``regridded'' properties, in order to determine the boundary

conditions at the next time step for the new grid.

A 4th-order Runge±Kutta scheme is employed in the time integrations for Df/Dt, Dr/Dt, and
Dz/Dt. Using this scheme, it is necessary to solve the Laplace equation eight times, four for the
liquid and four for the gas. However, at the end of each time step it is necessary to solve the
Laplace equation for both domains again (due to the regridding), resulting in a total of ten
Laplace solutions per time step using this procedure.

2.2. Domain discretization and boundary conditions

The time-dependent distortion of the droplet is driven by the instantaneous pressure
distribution generated by the unsteady gas ¯ow around the body. Since the outer ¯ow is
unsteady, a freestream pressure gradient is present across the drop. This pressure gradient leads
to the virtual mass force which will cause translation of the droplet center of gravity with time.
Prosperetti (1984) has shown that the velocity of droplet translation scales directly with the
gas/liquid density ratio (E) such that virtual mass e�ects are of vanishing importance when EW1.
In this case, we may simplify the domain required for axisymmetric computations by
considering only the quadrant rr0, zr0, rather than the entire upper half plane. While we
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will not be able to investigate virtual mass e�ects using this domain, it does provide a

substantial reduction in the number of nodes (and hence run time) required for a given

simulation. In addition, we have veri®ed that the droplet distortion is not a�ected by this

assumption; nearly identical distortion is obtained for a comparable model which utilized the

entire upper half plane, thereby including virtual mass e�ects. Since the matrix inversions in

the BEM approach scale as the cube of the number of nodes, the simpli®ed domain provides a

factor of eight in computational savings over the complete upper half-plane domain.

Under this assumption, the computational domain and the boundary conditions used in this

analysis are displayed in Fig. 1. Gas nodes are denoted with an ``x'', while the liquid nodes are

labeled with an ``o''. Along the radial line of symmetry for both domains, q=0 in the liquid

and fg=0 in the gas in order to support the assumption discussed above. We require the

fg=0 condition to insure that no vertical velocities are present in the gas which provides a

condition consistent with the neglect of droplet translation. Eqs. (16) and (17) were used to set

the boundary condition along the interface. On the outer boundary of the gas domain, a

sinusoidal velocity history is used to model the acoustic disturbance:

fg � zg cos
o
2

� �
: �19�

Here, the factor of 1/2 in the cosine argument is used to cause the harmonic condition to

occur at o= on. Physically, the drop is distorted into a prolate shape by an acoustic wave

traveling either to the left or to the right, so that the proper frequency to characterize the

forcing function is actually o/2. Nodes are not required along the axis of symmetry (with the

exception of the terminus of droplet and outer-gas boundaries) since the Green's functions

vanish as r 4 0.

Fig. 1. Schematic of computational domain and boundary conditions.

I.F. Murray, S.D. Heister / International Journal of Multiphase Flow 25 (1999) 531±550 537



3. Code implementation and validation

The accuracy of the algorithm was veri®ed by comparing its results to various analytic and

numerical solutions of related problems. Three separate validation cases were considered:

steady ¯ow over a sphere, non-linear oscillations of a liquid droplet, and droplet pro®les for a
steady cross¯ow.

The accuracy of the gas domain solution was tested by comparing the distribution of the

velocity potential over a sphere with the analytic solution of the same problem. The analytic

solution was compared to the numerical solutions for grids using, 45, 35, 25, and 15 nodes
along the interface. The numerical results agree well with the analytic solution, and the

magnitude of the error is well below 0.5% for all cases. For computational e�ciency, it was

decided to employ only 15 nodes to model the surface of the droplet. For cases when the drop
becomes highly deformed, as many as 45 nodes were employed in order to adequately resolve

the surface. Convergence studies indicate that the 45 node grid is adequate to represent all

droplet shapes presented herein.

As explained previously, an expression for the fundamental oscillatory mode was
developed by Lamb using linear analysis. This analysis assumed a linearized surface shape of

the form:

r � 1� Z cos�my� sin�ont� �20�
where Z is the measure of the initial disturbance amplitude. At ®nite deformations, the drop's

natural frequency tends to be reduced when compared to Lamb's result. This e�ect has been

Fig. 2. Comparisons of predicted frequency shifts for nonlinear oscillations of a droplet.
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studied experimentally by Trinh and Wang (1982) and through the use of a second-order
asymptotic analysis by Tsamopoulos (1988). The current calculations are compared with these
results in Fig. 2 for various assumed levels of initial deformation of the drop. Here, the inviscid
BEM solutions tend to predict the upper bound of the measurements of Trinh and Wang
which utilized a neutrally-bouyant drop of silicon oil/carbon tetrachloride suspended in
distilled water. While the current results agree reasonably well with the asymptotic predictions
at low deformations, substantial di�erences are noted at higher deformation levels, presumably
due to 4th-order e�ects not considered in the analytic treatment.
A ®nal validation process involved veri®cation of the accuracy of the model when there is a

strong coupling e�ect between the gas and liquid domains. This was accomplished by
comparing droplet pro®les from the present calculations to those of Miksis, et al. (1981) who
developed a model to predict the equilibrium shape of a droplet subjected to a uniform ¯ow.
The equilibrium drop pro®le was determined by balancing the pressure of the gas on the
surface with the surface tension and internal pressure at the same point.
In order to achieve a steady state solution, it was necessary to introduce a dissipative

mechanism, which ultimately yielded a steady state solution. Numerical smoothing was applied
to f until surface velocities vanished. Fig. 3 shows a comparison between the predicted pro®les
of the numerical model and the method used by Miksis et al. showing excellent agreement
between the two simulations.

4. Results

The algorithm was utilized to assess the in¯uence of perturbation frequency (o/on), Weber
number (We), and density ratio (E) on the nonlinear response of a droplet to an imposed

Fig. 3. Comparisons of steady state droplet pro®les.
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acoustic oscillation. The results presented here represent over 200 runs of the code.
Calculations typically used 15 nodes along the interface, 15 along the radial axis in the gas,
and 10 nodes along the outer boundary of the gas domain. However, larger grids (as many as
45 nodes along the interface) were utilized to resolve more complex droplet shapes, such as
those in Fig. 14 described below.
During these simulations, the level of the droplet response is characterized by two

parameters, the aspect ratio and the oscillatory mode coe�cients. The aspect ratio provides a
gross measure of overall droplet deformation and is de®ned as being the ratio of the major axis
over the minor axis of the droplet at peak deformation. The mode coe�cients, are determined
by expressing the current droplet shape as a sum of Legendre polynomials:

r � 1�
X1

m�1Cm�t� cos�my� �21�
where y is the angle measured from the positive z axis and Cn are the time varying coe�cients.
Because cosine functions are orthogonal, it is possible to calculate the coe�cients using
(Lundgren and Mansour 1988):

Cm � 1

p

�p
ÿp
�rÿ 1� cos�my� dy: �22�

Due to the fact that both incompressible and inviscid assumptions are employed in the gas
phase, there is no mechanism to generate a surface pressure distribution which is asymmetric
about the r axis in Fig. 1. For this reason, the model cannot excite odd modes of oscillation.
This fact was veri®ed by demonstrating that mode coe�cients for the odd modes were all zero
to within machine accuracy (10ÿ14).

4.1. Frequency response spectrum

The e�ect of the acoustic perturbation frequency was investigated by performing
approximately 100 simulations. While the frequency was varied, the Weber number was held at
0.5779 and the density ratio was 0.00123. These conditions correspond to acoustic excitation of
a 100 micron water droplet with a 160 db disturbance in ambient air. Droplet translational
velocities due to virtual mass e�ects, which are neglected as described previously, will be of the
order of 0.1% of the peak acoustic velocity for this density ratio. A time step of 0.05 was
employed for these computations. Results are displayed on Fig. 4, which charts the aspect ratio
for a range of frequency ratios. Readers are cautioned that the purpose of this investigation is
to determine regions of high response; actual aspect ratios do depend on the assumed initial
conditions (spherical vs deformed drop, sine wave vs cosine wave disturbance).
Fig. 4 displays a series of peaks that occur near the harmonics of the natural frequency of

the droplet. A noteworthy area is the break up region that exists for frequency ratios between
0.80 and 0.90. In this band, the disturbance is tuned to the natural frequency of the droplet to
an extent such that atomization occurs. All peaks are shifted to frequencies slightly less than
the linear result due to the nonlinear frequency shift as shown in Fig. 2. The continual shifting
of droplet natural frequency with deformation level leads to a bounded response over much of
the frequency range (for this Weber number). In these regions, the acoustic perturbation
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continues to excite the droplet until the oscillations of the drop become out of phase with the

disturbance, thereby tending to reduce the amplitude of the oscillation. This process repeats

inde®nitely or until the drop breaks up.

Areas of signi®cant response occur for o/on=near 0.5, 1.0, 2.0, 3.0, 4.0, and 6.0. The peaks

near o/on=0.5, 1.0, and 2.0 are primarily driven by second mode oscillations, while the peaks

near o/on=3.0, 4.0, and 6.0 contain signi®cant fourth-mode e�ects. It is important to note

that the fundamental frequency of the fourth mode is three times that of the fundamental

frequency of the second mode, o4=3 on, for a drop in a low density gas (EW1). It is worth

mentioning that a frequency ratio near 5.0 does not produce a notable response.

For relatively low disturbance frequencies (owon), a quasi steady-state response is observed

whereby the droplet closely tracks the imposed perturbation with a very small phase lag. The

amplitude (aspect ratio) in this region is greater than the response for higher o�-harmonic

frequency ratios due to the negligible phase lag in this region. At the other extreme (owon) the

oscillations of the gas are so fast that the droplet is unable to respond appreciably to the

changes in the gas ¯ow. Here, the droplet responds to a mean dynamic pressure generated by

the acoustic wave.

As the frequency ratio approaches a value of 0.5, the droplet begins to experience a sub-

harmonic excitation. The frequency of its oscillation is 0.0604, which is approximately half of

the natural frequency, 0.1304. The droplet behavior is characterized by a large deformation

followed by a smaller one. The larger response is attributed to the peaks in the acoustic wave,

whereas the secondary response is due to the droplet attempting to maintain its natural

frequency. It has been observed that the second mode is solely responsible for the activity.

Fig. 4. Frequency response spectrum.
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There is a negligible amount of fourth mode activity, and the higher order modes are virtually
non-existent (Murray, 1996).
For frequency ratios near the drop natural frequency, the level of droplet activity is high,

such is the case for o/on=0.79. Fig. 5 displays the radial position of the node at z=0 on the
interface for this frequency ratio. As the droplet begins to deform, the reduction in its natural
frequency drives it toward a harmonic condition with the imposed disturbance. At very large
deformation, the droplet natural frequency drops to the the point where the acoustic wave
provides destructive interference, i.e. the forcing signal is out of phase with the droplet
oscillation. A reduction in droplet response occurs in this time frame. Eventually, the droplet
deformation is small enough so as to place its natural frequency near that of the acoustic wave
and growth in amplitude is observed again. The overall period of this envelope of oscillations
is T=398, which represents (approximately 6 1/2 oscillations of the imposed gas disturbance).
The droplet shapes at various times in this process are summarized in Fig. 6.
The activity of the droplet is initially controlled by second mode e�ects. The time history of

the mode coe�cients for the o/on=0.79 case is shown in Fig. 7. As the oscillatory amplitude
increases, fourth mode coupling appears. As in all results investigated in this study, 6th, 8th,
and higher even modes gave negligible contributions to the instantaneous droplet shapes. In
conjunction with the nonlinear frequency shift, the fourth mode e�ects have a stabilizing
in¯uence upon the droplet. Fig. 8 indicates that the second and fourth modes become coupled
and destructively interfere, which causes the magnitude of the oscillations to dampen and the
fourth mode e�ects to vanish. A similar envelope response is observed for the o/on=0.925
case, however, the interference that occurs is somewhat constructive, which serves to amplify
the response.

Fig. 5. Time history of top node position.
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For frequency ratios between 0.79 and 0.925, the second mode e�ects become overwhelming
and the droplet breaks up. As the frequency ratio increases past 0.925, the droplet activity
drops o� since the excitation is above the resonant condition for ®nite deformation of the
drop. A region of moderate droplet response lies in the frequency range of 1.2 to 1.4, which
corresponds to the subharmonic of the fourth mode. Signi®cant response is also noted at the
second-harmonic of the fundamental mode, as one would expect.

Fig. 6. Time history of droplet pro®les.

Fig. 7. Time history of mode coe�cients.
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For a frequency ratio near 3.0, the droplet experiences the third harmonic of the second
mode of oscillation as well as the fundamental frequency of the fourth mode of oscillation. The
time histories of the position of the node at z=0 and the mode coe�cients are presented in

Fig. 8. Oscillatory mode interference.

Fig. 9. Time history of top node position.
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Fig. 9 and 10. The overall period for the process is over 2500, during which over 150 gas
oscillations occur. Throughout this process, the magnitude of the second mode remains
reasonably constant, whereas the fourth mode grows and decays over the period. Initially, the

Fig. 10. Time history of mode coe�cients.

Fig. 11. Time history of top node position.
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droplet oscillates in the second mode. As the fourth mode grows, it dominates the behavior of
the droplet. The fourth mode then decays to roughly the same order of magnitude as the
second mode. Similar behavior is observed for o/on=3.975.
Probably the most surprising result from the frequency spectrum is that more response is

noted near the second harmonic of the fourth mode (o/on16) than at the primary fourth mode
excitation frequency. These two peaks were the subject of substantial scrutiny; results were
replicated for several di�erent timesteps and mesh sizes. The position history for the node at
z=0 for this case is shown in Fig. 11. Here, the overall process takes about 780 dimensionless
s, corresponding to about 95 periods of acoustic excitation. To seek an explanation for the
heightened response (as compared to the o/on=2.97 case), the second and fourth mode
coe�cients are compared in Fig. 12. As seen in the upper plot, the second mode response is
similar in both cases. However, the lower plot reveals a heightened fourth mode response near
t=400 for the o/on=5.89 case. Apparently, there is a constructive nonlinear interaction in
the o/on=5.89 case leading to stronger fourth mode e�ects and increased overall excitation.
Since viscous e�ects are more prevalent in damping higher modes, this curious response may
not be replicated in actual experiments.

4.2. E�ect of acoustic disturbance intensity

The in¯uence of the intensity of the acoustic wave was investigated by conducting a series of
simulations at ®xed density and frequency ratios, but with varying Weber number. For these
simulations, the time step was set to be approximately 1/1000 of the period of a droplet

Fig. 12. Second and fourth mode coe�cients.
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oscillation for the m=2 mode. Once again, the aspect ratio was used as an overall measure of
droplet response; Fig. 13 provides results for the case E=0.00123, o/on=1.0. During these
simulations, it was observed that droplet atomization occurred at Weber numbers above 1.10.
Here it is important to note that this ``critical Weber number'' is dependent on both density
and frequency ratios; the 1.10 value is for harmonic excitation of a water droplet in air
(E=0.00123).
Droplet break up was studied by conducting trials using Weber numbers greater than the

critical value. From this analysis, three regimes of break up were identi®ed. Examples of these
modes are shown in Fig. 14. In the ``nipple'' breakup regime (1.1< We<2.5), two small
satellite droplets are formed as a result of the nonlinear motion of the drop. Since the acoustic
intensity is barely above the threshold value, breakup in this region takes a substantial amount
of time. The nipple regime is similar to the mode of break up experienced in the break up band
of frequencies, as discussed in the beginning of Section 4.1. As the Weber number is increased
to 2.5, atomization occurs with the formation of two satellite droplets which are larger than
the central drop. The ``kidney'' regime exists for 2.5< We<3.0 and is characterized by
breakups which occur in 1±2 periods of the acoustic wave.
At large Weber numbers, the drop ¯attens out in the direction perpendicular to the gas ¯ow,

and the center continues to ¯atten which results in the pushing out of a toroid of ¯uid. Break
up occurs when the center of the drop pinches, and the cross-section resembles a torus.
Atomization in this ``toroidal'' mode occurs in less than one acoustic period for Wer3.0.
Here, the droplet rapidly ¯attens in a plane perpendicular to the acoustic wave. With
increasing Weber number, the overall diameter of the droplet (at the atomization point)
increases, while the inner diameter of the torus decreases as shown in Fig. 14. In this ®gure,
the We=5.78 case is at a reduced scale for display purposes. The droplet shapes at high We

Fig. 13. E�ects of the Weber number upon droplet behavior (E=0.00123, o= on).
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values are consistent with ``aerodynamic shattering'' which has been documented by observing
the response of a droplet to a shock wave (see Hsiang and Faeth (1992) for background).
A summary of the breakup times are provided in Fig. 15. Here, times are measured from the

initiation of the acoustic forcing and are nondimensionalized by the period of the acoustic
waveform. The curve is somewhat discontinuous in places due to the fact that breakups occur
within discrete parts of a given cycle. Once again, for the conditions noted, no breakups
occurred for We<1.1.

5. Conclusions

The algorithm presented in this paper has been used to study the nonlinear evolution of an
acoustically excited droplet. While the maximum response of the droplet occurs at the
harmonic condition (o=on), signi®cant responses also occur for o/on near values of 0.5, 2, 3,
4, and 6. The actual peak responses are also slightly less than these values as a result of the
reduction in the droplet's natural frequency at ®nite deformation amplitude (nonlinear
frequency shift). Droplet responses for the frequency ratios near 0.5 and 2.0 are dominated by
the second mode, whereas the coupling of the second and fourth modes are responsible for the
responses to the frequency ratios near 3.0 and 4.0. The droplet response for o/on16, which

Fig. 14. Weber number induced droplet break up pro®les (E=0.00123, o= on).
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represents the second harmonic of the fourth mode, is dominated by fourth mode activity and
the amplitude of the response actually exceeds that of some of the lower-order harmonics.
As the magnitude of the acoustic disturbance increases, droplet atomization is predicted to

occur. For harmonic forcing of a liquid droplet in air, a critical Weber number of 1.10 divides
the oscillatory and atomization regimes. Droplet breakups occurred in ``nipple'', ``kidney'', and
``toroidal'' modes as the Weber number was increased above this threshold value. Break up
times were roughly inversely proportional to the Weber number under these conditions.
Finally, increasing gas/liquid density ratio under ®xed a Weber number and frequency ratio
conditions was also shown to heighten droplet response.
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